Quantum-Proof Multi-Source Randomness Extractors in the Markov Model

نویسندگان

  • Rotem Arnon Friedman
  • Christopher Portmann
  • Volkher B. Scholz
چکیده

Randomness extractors, widely used in classical and quantum cryptography and other fields of computer science, e.g., derandomization, are functions which generate almost uniform randomness from weak sources of randomness. In the quantum setting one must take into account the quantum side information held by an adversary which might be used to break the security of the extractor. In the case of seeded extractors the presence of quantum side information has been extensively studied. For multi-source extractors one can easily see that high conditional min-entropy is not sufficient to guarantee security against arbitrary side information, even in the classical case. Hence, the interesting question is under which models of (both quantum and classical) side information multi-source extractors remain secure. In this work we suggest a natural model of side information, which we call the Markov model, and prove that any multi-source extractor remains secure in the presence of quantum side information of this type (albeit with weaker parameters). This improves on previous results in which more restricted models were considered or the security of only some types of extractors was shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Source Randomness Extractors Against Quantum Side Information, and their Applications

We study the problem of constructing multi-source extractors in the quantum setting, which extract almost uniform random bits against an adversary who collects quantum side information from several initially independent classical random sources. This is a natural generalization of the two much studied problems of seeded randomness extraction against quantum side information, and classical indep...

متن کامل

Semidefinite Programs for Randomness Extractors

Randomness extractors are an important building block for classical and quantum cryptography. However, for many applications it is crucial that the extractors are quantum-proof, i.e., that they work even in the presence of quantum adversaries. In general, quantum-proof extractors are poorly understood and we would like to argue that in the same way as Bell inequalities (multi prover games) and ...

متن کامل

Device-independent Randomness Amplification and Privatization

Randomness is an essential resource in computer science. In most applications perfect, and sometimes private, randomness is needed, while it is not even clear that such a resource exists. It is well known that the tools of classical computer science do not allow us to create perfect and secret randomness from a single weak public source. Quantum physics, on the other hand, allows for such a pro...

متن کامل

Quantum-Proof Extractors: Optimal up to Constant Factors

We give the first construction of a family of quantum-proof extractors that has optimal seed length dependence O(log(n/ǫ)) on the input length n and error ǫ. Our extractors support any min-entropy k = Ω(log n+ log(1/ǫ)) and extract m = (1− α)k bits that are ǫ-close to uniform, for any desired constant α > 0. Previous constructions had a quadratically worse seed length or were restricted to very...

متن کامل

Randomness Extractors – An Exposition

Randomness is crucial to computer science, both in theory and applications. In complexity theory, randomness augments computers to offer more powerful models. In cryptography, randomness is essential for seed generation, where the computational model used is generally probabilistic. However, ideal randomness, which is usually assumed to be available in computer science theory and applications, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016